

Peirong Liu

Harvard Medical School & Massachusetts General Hospital

1 Introduction

- 2 Physics-Driven Learning For Interpretable Diagnosis
- 3 Modality-Agnostic Foundation Models Towards Accessible Healthcare
- 4 Future Directions and Collaborations

1 Introduction

- 2 Physics-Driven Learning For Interpretable Diagnosis
- 3 Modality-Agnostic Foundation Models Towards Accessible Healthcare
- 4 Future Directions and Collaborations

Introduction

Medical Imaging in Patient Care

Patient Intake & Screening

Medical Imaging in Patient Care

Medical Imaging in Patient Care

Medical Imaging in Patient Care

Medical Image Analysis \times AI \rightarrow *AI-Powered* Diagnosis & Treatment

Medical Imaging

Medical Image Analysis \times AI \rightarrow *AI-Powered* Diagnosis & Treatment

Medical Imaging

AI-Powered Diagnosis & Treatment in Modern Healthcare

AI-Powered Diagnosis & Treatment in Modern Healthcare

No AccelerationAcceleration = 3Acceleration = 6Noise in Parallel MR Imaging (Faster Acquisition ~ Lower Quality) &

Patient-Induced Motion Artifacts ⊄ *Physics*-Induced Metallic Artifacts ♂

1 Introduction

2 Physics-Driven Learning For Interpretable Diagnosis

3 Modality-Agnostic Foundation Models Towards Accessible Healthcare

4 Future Directions and Collaborations

Cardiovascular Diseases (CVDs) | Stroke

Stroke | Ischemic Stroke

American Heart Association (AHA) and American Stroke Association (ASA): Stroke and Treatment C

Stroke | *Ischemic Stroke*

American Heart Association (AHA) and American Stroke Association (ASA): Stroke and Treatment C

Stroke | Ischemic Stroke | Perfusion Imaging *Records* Blood Flow

J. Demeestere el al.: Review of Perfusion Imaging in Acute Ischemic Stroke: From Time to Tissue. Stroke (2020) 🕫

Stroke | Ischemic Stroke | Perfusion Imaging *Records* Blood Flow

J. Demeestere el al.: Review of Perfusion Imaging in Acute Ischemic Stroke: From Time to Tissue. Stroke (2020) 🕫

Stroke | Ischemic Stroke | Perfusion Imaging - Conventional Voxel-Wise Analysis

F. Scalzo & D. Liebeskind: Perfusion Angiography in Acute Ischemic Stroke. Computational and Mathematical Methods in Medicine (2016) &

Stroke | Ischemic Stroke | Perfusion Imaging - Conventional Voxel-Wise Analysis

TTP: Time To Peak | CBV: Cerebral Blood Volume | AIF: Arterial Input Function

F. Scalzo & D. Liebeskind: Perfusion Angiography in Acute Ischemic Stroke, Computational and Mathematical Methods in Medicine (2016) C

Stroke | Ischemic Stroke | Perfusion Imaging - Conventional Voxel-Wise Analysis

TTP: Time To Peak | CBV: Cerebral Blood Volume | AIF: Arterial Input Function

F. Scalzo & D. Liebeskind: Perfusion Angiography in Acute Ischemic Stroke, Computational and Mathematical Methods in Medicine (2016) C

Fluid Flow Around an Obstacle

Blood Cells Tracking 🖒

Fluid Flow Around an Obstacle 27

Blood Cells Tracking 🗗

Optical Flow for Object Tracking ♂

Fluid Flow Around an Obstacle 27
Blood Cells Tracking ☑

Perfusion Imaging *Records* Blood Flow ~ *Fluid Dynamics*

Optical Flow for Object Tracking C

Fluid Flow Around an Obstacle 27

Non-Rigid Image Registration ☑

васк

Perfusion Imaging *Records* Blood Flow ~ *Fluid Dynamics*

•••

Fluid Flow Around an Obstacle 27

Non-Rigid Image Registration 🗗

Weather and Climate Forecast C

BACK

[Preview] End-to-End & Interpretable Stroke Lesion Detection

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) &

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) C

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral) &

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (* Oral) C

P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) C

[Preview] End-to-End & Interpretable Stroke Lesion Detection

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral)

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) C

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral) &

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (* Oral) C

P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) &

[Preview] End-to-End & Interpretable Stroke Lesion Detection

P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) &

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral)

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) C

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral) &

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (* Oral) &

Physics-Driven Formulation for Tracer Dynamics | Advection-Diffusion PDE

$$\frac{\partial C}{\partial t} = -\mathbf{V} \cdot \nabla C + \nabla \cdot (\mathbf{D} \,\nabla C)$$

C: Tracer Concentration

Mass Transport of Tracer

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) ♂ P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ♂

Physics-Driven Formulation for Tracer Dynamics | Advection-Diffusion PDE

via Advection

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) © P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ©

Physics-Driven Formulation for Tracer Dynamics | Advection-Diffusion PDE

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) © P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ©

Perfusion Imaging via Advection-Diffusion | Synthetic Brain Perfusion Samples

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) © P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ©

Physics-Driven Learning

Modality-Agnostic Foundation Models

Future Directions and Collaborations

Perfusion Imaging via Advection-Diffusion | *Time-Series Input*

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) ♂ P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ♂ P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (★ Oral) ♂

Physics-Driven Learning

Perfusion Imaging via Advection-Diffusion | Forward in Time

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) &

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) 🗗

Physics-Driven Learning

Perfusion Imaging via Advection-Diffusion | Forward in Time

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) &

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) 🗗

Physics-Driven Learning

Perfusion Imaging via Advection-Diffusion | Forward in Time

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) &

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021)

Perfusion Imaging via Advection-Diffusion | Forward in Time

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) &

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) C

Physics-Driven Learning

Perfusion Imaging via Advection-Diffusion | Time-Series Regression

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) &

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021)

Perfusion Imaging via Advection-Diffusion | Unstable Physics-Driven Learning

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) &

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) 🗗

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral) &

Perfusion Imaging via Advection-Diffusion | Regularizations for Realistic Constraints

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) C

- P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) &
- P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral) 🗗

Regularizations Incorporating Realistic Constraints

▲ Sparsity \Leftrightarrow L1, Smoothness \Leftrightarrow L2 on Gradients, Bounded Values \Leftrightarrow torch.clamp, ...

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral)

- $\stackrel{l}{\leftarrow}$ Sparsity ⇔ L1, Smoothness ⇔ L2 on Gradients, Bounded Values ⇔ torch.clamp, ...
- Incompressible Flow (Constant Flow Density)

Water Flow ₽

- $\stackrel{l}{\leftarrow}$ Sparsity ⇔ L1, Smoothness ⇔ L2 on Gradients, Bounded Values ⇔ torch.clamp, ...
- Incompressible Flow (Constant Flow Density)

Water Flow ₽

The Aerodynamics of Ferrari 499P ♂

- $\stackrel{l}{\leftarrow}$ Sparsity ⇔ L1, Smoothness ⇔ L2 on Gradients, Bounded Values ⇔ torch.clamp, ...
- Incompressible Flow (Constant Flow Density)

Water Flow 🗗

The Aerodynamics of Ferrari 499P 🗗

Cerebral Blood Flow ☑

 ${\scriptstyle {\scriptstyle \bullet} {\scriptstyle \bullet}} Sparsity \Leftrightarrow L1, Smoothness \Leftrightarrow L2 \ on \ Gradients, Bounded \ Values \Leftrightarrow {\it torch.clamp, ...}$

[®] Incompressible Flow (Constant Flow Density) \Leftrightarrow ∇ · V ≡ 0 (Divergence-Free Velocity)

 $\min \int_{x \in \Omega} \|\nabla \cdot \mathbf{V}\| \, dx$

Water Flow □

The Aerodynamics of Ferrari 499P 🗗

Cerebral Blood Flow ☑

Solution Provide The Provided HTML Provided

min $\int_{X \in \Omega} \|\nabla \cdot \mathbf{V}\| dx$ *X Reduce* Time-Series Regression Performance X Not Guaranteed During Inference

Water Flow [7]

The Aerodynamics of Ferrari 499P ☑

Cerebral Blood Flow г₹

Regularizations Incorporating Realistic Constraints | Symmetric PSD Diffusion

- $_{e}$ Sparsity ⇔ L1, Smoothness ⇔ L2 on Gradients, Bounded Values ⇔ torch.clamp, ...
- [®] Incompressible Flow (Constant Flow Density) \Leftrightarrow ∇ · V ≡ 0 (Divergence-Free Velocity)

Symmetric Positive Semi-Definite (PSD) Diffusion

Dye Spreading in Water ☑

White Matter Tracts from Diffusion Tensor Imaging C

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (★ Oral) 🖸

Regularizations Incorporating Realistic Constraints | Symmetric PSD Diffusion

- $_{e}$ Sparsity ⇔ L1, Smoothness ⇔ L2 on Gradients, Bounded Values ⇔ torch.clamp, ...

Dye Spreading in Water ☑

White Matter Tracts from Diffusion Tensor Imaging C

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (★ Oral) 🖸

Regularizations Incorporating Realistic Constraints

 $_{e}$ Sparsity ⇔ L1, Smoothness ⇔ L2 on Gradients, Bounded Values ⇔ torch.clamp, ...

Symmetric Positive Semi-Definite (PSD) Diffusion $\Leftrightarrow q^T \mathbf{D} q \ge 0, \forall q \neq 0$

[®] Incompressible Flow (Constant Flow Density) \Leftrightarrow ∇ · V ≡ 0 (Divergence-Free Velocity)

 $-\min \int_{x \in \Omega} \|\nabla \cdot \mathbf{V}\| \, dx$

min ?

Dye Spreading in Water ☑

White Matter Tracts from Diffusion Tensor Imaging 27

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (★ Oral) 🖸

Network Outputs

Reality-Constrained

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral)

Network Outputs

Surjective Mapping: Regularization-Free \mapsto Reality-Constrained

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral)

Learning Incompressible Flow, by Definition

Surjective Mapping: Regularization-Free → Reality-Constrained

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral)

Learning Incompressible Flow, by Definition

Learning Symmetric PSD Diffusion, by Definition

Surjective Mapping: Regularization-Free → Reality-Constrained

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral)

Perfusion Imaging via Advection-Diffusion: Regularization-Free Learning

[Recap] Perfusion Imaging - Conventional Voxel-Wise Analysis

TTP: Time To Peak | CBV: Cerebral Blood Volume | AIF: Arterial Input Function

F. Scalzo & D. Liebeskind: Perfusion Angiography in Acute Ischemic Stroke. Computational and Mathematical Methods in Medicine (2016) 🗗

Perfusion Imaging via Advection-Diffusion: AIF-Free for the First Time

Perfusion Imaging via Advection-Diffusion: AIF-Free & Spatiotemporally Continuous

Perfusion Imaging via Advection-Diffusion: AIF-Free & Spatiotemporally Continuous

Perfusion Imaging via Advection-Diffusion: AIF-Free & Spatiotemporally Continuous

Perfusion Imaging via Advection-Diffusion: AIF-Free & Spatiotemporally Continuous

Perfusion Imaging via Advection-Diffusion: AIF-Free & Spatiotemporally Continuous

Perfusion Imaging via Advection-Diffusion: AIF-Free & Spatiotemporally Continuous

Perfusion Imaging via Advection-Diffusion | Qualitative Results

* Gold-Standard Lesion from the ISLES 2017 Stroke Lesion Segmentation Challenge &

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) C

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) C

Perfusion Imaging via Advection-Diffusion | Qualitative Results

* Gold-Standard Lesion from the ISLES 2017 Stroke Lesion Segmentation Challenge &

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) C

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) C

Perfusion Imaging via Advection-Diffusion U Conventional Voxel-Wise Approaches

Conventional Perfusion Feature Maps: CBF - Cerebral Blood Flow | CBV - Cerebral Blood Volume | MTT - Mean Transit Time

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral)

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021)

Perfusion Imaging via Advection-Diffusion U Conventional Voxel-Wise Approaches

Conventional Perfusion Feature Maps: CBF - Cerebral Blood Flow | CBV - Cerebral Blood Volume | MTT - Mean Transit Time

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) C

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021)

Physics-Driven Learning

Modality-Agnostic Foundation Models

Perfusion Imaging via Advection-Diffusion U Conventional Voxel-Wise Approaches

Conventional Perfusion Feature Maps: CBF - Cerebral Blood Flow | CBV - Cerebral Blood Volume | MTT - Mean Transit Time

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) 2

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021)

[Recap] Perfusion Imaging via Advection-Diffusion: AIF-Free for the First Time

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral)

Perfusion Imaging via Advection-Diffusion | Stroke Diagnosis & Lesion Detection

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (★ Oral) © P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) ©

Disentangling Anomaly within Stochastic Dynamical Systems

Surjective Mapping: Regularization-Free \mapsto Reality-Constrained

P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) C

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (* Oral) 🛙

End-to-End & Interpretable Stroke Lesion Detection | Framework Overview

Surjective Mapping: Regularization-Free
Reality-Constrained

P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) C

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (* Oral) 🗠

End-to-End & Interpretable Stroke Lesion Detection | Qualitative Results

✓ Interpretable Physics: V, D

Testing Subjects from the ISLES 2017 Stroke Lesion Segmentation Challenge 2

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (★ Oral) C P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) C

Subject #1

End-to-End & Interpretable Stroke Lesion Detection | Qualitative Results

Testing Subjects from the ISLES 2017 Stroke Lesion Segmentation Challenge &

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (★ Oral) © P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) ©

End-to-End & Interpretable Stroke Lesion Detection | Qualitative Results

Testing Subjects from the ISLES 2017 Stroke Lesion Segmentation Challenge &

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (★ Oral) © P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) ©

Physics-Driven Learning

Modality-Agnostic Foundation Models

Future Directions and Collaborations

[Summary] End-to-End & Interpretable Stroke Lesion Detection

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral)

P. Liu et al.: Disentangling Normal and Abnormal Perfusion via Stochastic Advection-Diffusion. Under Review at IEEE TPAMI (2024) &

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) C

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral) 🕫

P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (* Oral) &

Robust and Interpretable Learning for Modern Healthcare

1 Introduction

2 Physics-Driven Learning For Interpretable Diagnosis

3 Modality-Agnostic Foundation Models Towards Accessible Healthcare

4 Future Directions and Collaborations

Towards a "Superpowered" Foundation Model for Medical Imaging

Towards a "Superpowered" Foundation Model for Medical Imaging

Awesome-Foundation-Models (Public)		⊙ Watch 41 + ♥ Fork 38	8 🔹 😭 Star 862 👻		
P main → P 1 Branch © 0 Tags Control initialization Update README.md Son Awesome-CV-Foundational-N	Q Go to file (1) Add file 3abe712 - 4 days o fodels (Public)	About A curated I vicino and Vicino and Wicino and Vicino and	list of foundation models for	464	
P main → P 1 Branch © 0 Tags awaisrauf Update README.md Awesome-Foundation-Models-in	Q. Go to file	VLM_survey (Public) 2 main - 2 1 Branch (S (S Watch 4	0 Tegs Q. Go to file → V Fork (15) → C ☆ Star (215) →	Watch 223 • C Add file • <> Code • V0d98- 4 days ago © 87 Commits	♥ Ferk 220 ↓ ☆ Star 2.4k ↓ About Collection of AWESOME vision-language models for vision tasks ↓
} main →)} 2 Branches (\$) 0 Tags S amirhossein-kz Update README.md	Q Go to file	t Add file + Code +	About A curated list of foundation models for vision and language tasks in medical	9 months ago 4 days ago ℓ :≣	Comparement upper maning upper transfer-learning clip knowledge-distillation vision-language-model multi-model-model II Readme A Activity
LICENSE	Initial commit Update README.md	last year last year	imaging P arxiv.org/abs/2310.18689 sam medical medical-imaging		☆ 2.6k stars ③ 123 watching ¥ 220 forks Report repository
III README A MIT license		1 :=	medical-image-processing medical-image-analysis foundation-models	alter wich. Tatel Prompt Tuning alter wich. Visual Prompt Taning alter wich. Tatel and Visual Prempt Taning	Releases No releases published
🤲 Awesome Found	dational Models i Imaging 🔥	n Medical	☐ Readme 極 MIT license ☆ Activity	ion revitation	Packages No packages published

Towards a Robust & Generalized Foundation Model for Medical Imaging

Robustness

Generalizability

Medical Imaging Modalities | Variety

Future Directions and Collaborations

Medical Imaging Modalities | Variety - The Non-Calibrated MRI

Medical Imaging Modalities | Variety - The Non-Calibrated MRI

✓ Individual Assessment in Clinical Practice

X Data-Driven Quantitative Evaluations

FLAIR (Abnormalities)

MRI Scans with Various Modalities from the Same Subject

Medical Imaging Modalities | *Variety* \neq *Accessibility*

Percentage of Population Covered by Health Insurance, 2017

Medical Imaging Modalities | *Variety* ≠ *Accessibility*

Medical Imaging Modalities | *Variety* ≠ *Accessibility*

Medical Imaging Modalities | Variety & Accessibility, in the Future?

Ultra-Low-Field & Portable MRI Scanner from Hyperfine C

MRI Units Per Million People, 2022 🗗

Medical Imaging Modalities | Variety & Accessibility, in the Future?

Field Strength	Price			
1.5 T	> \$1,000,000			
3 T	> \$3,000,000			
7 T	> \$7,000,000	nature communications		
0.064 T	~ \$250,000 × Low-Quality	Explore content Y About the journal Y Publish with us Y		
MYPERFIL		nature > nature communications > g&as > article Q&A Open access Published: 13 March 2024 Looking towards the future of MRI in Africa Nature Communications 15, Article number: 2260 (2024) Cite this article		

Ultra-Low-Field & Portable MRI Scanner from Hyperfine

Towards a Robust & Generalized Foundation Model for Medical Imaging

Robustness

Generalizability

Towards a Robust & Generalized Foundation Model for Medical Imaging

Robust & Generalized

T1-weighted (T1w)

T2-weighted (T2w)

FLAIR

MRI Scans with Various Modalities from the Same Subject

MRI Scans with Various Modalities & Qualities from the Same Subject

MRI Scans with Various Modalities & Qualities from the Same Subject

[Preview] Modality-Agnostic Feature Representation

Image Generation via Anatomical Domain Randomization: From Single Anatomy

Brain Anatomical Regions @ FreeSurfer, MGH

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) 🕫

Image Generation via Anatomical Domain Randomization → Unlimited Modalities

Domain Randomization: Conditioned on Anatomical Regions

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

Image Generation via Anatomical Domain Randomization → Unlimited Samples

⁽Resolution, Orientation, Noise, Artifacts, ...)

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

Modality-Agnostic Feature Representation | On-the-Fly *Synthetic* Inputs

Modality-Agnostic Feature Representation | On-the-Fly *Synthetic* Inputs

Modality-Agnostic Feature Representation | Framework Overview

Feature Robustness | Input Image Quality

* Feature Maps Selected from the Last Layer of UNet

* Baseline: Trained from Real T1w MRI (n = 3000)

Feature Robustness | Input Image Quality

* Feature Maps Selected from the Last Layer of UNet

* Baseline: Trained from Real T1w MRI (n = 3000)

Feature Robustness | Input Image Quality & Modality

Feature Robustness & Generalizability | Downstream Adaptations on Small Datasets

Feature Robustness & Generalizability | Downstream Adaptations on Small Datasets

Downstream Tasks: Fine-Tuned on n = 30 samples

[Recap] Brain-ID's Modality-Agnostic Learning

Anatomy-Specific, Modality-Agnostic Feature Representation @ Brain-ID

MRI Scans with Various Modalities & Qualities from the Same Subject

Modality-Agnostic Learning | Tissue Abnormalities (Pathology)

Anatomy-Specific, Modality-Agnostic Feature Representation @ Brain-ID

X Varying Pathology *Types* & *Shapes*

MRI Scans with Various Tissue Abnormalities (Pathology) across Different Datasets

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) 🕫

Modality-Agnostic Learning | Tissue Abnormalities (Pathology)

Anatomy-Specific, Modality-Agnostic Feature Representation @ Brain-ID

X Varying Pathology *Types* & *Shapes*

X Varying *Appearances* on Modalities

MRI Scans with Various Tissue Abnormalities (Pathology) across Different Datasets

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

[*Preview*] From Brain-ID to UNA | Bridging *Diseased* \mapsto *Healthy*

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) & P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) & P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) &

[*Preview*] From Brain-ID to UNA | Bridging *Diseased* \mapsto *Healthy*

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) & P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) & P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) &

[*Preview*] From Brain-ID to UNA | Bridging *Diseased* \mapsto *Healthy*

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) © P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) © P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) ©

Image Generation via Anomaly-Encoded Domain Randomization

P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) C

Image Generation via Anomaly-Encoded Domain Randomization

P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) & P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) &

Modality-Agnostic Synthesis | On-the-Fly Synthetic Healthy & Diseased Inputs

Anatomical Domain Randomization @ Brain-ID

UNA's Generation is Conditioned on Healthy Anatomy

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) @

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) C

Modality-Agnostic Synthesis | On-the-Fly Synthetic Healthy & Diseased Inputs

UNA Generates Diseased & Healthy Images On-the-Fly

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) 🖒

P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) &

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) C

Modality-Agnostic Synthesis | On-the-Fly Synthetic Healthy & Diseased Inputs

UNA Generates Diseased & Healthy Images On-the-Fly

- P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) 🕫
- P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) &
- P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) C

Modality-Agnostic Synthesis | Bridging *Diseased* \mapsto *Healthy*

UNA Synthesizes Healthy T1w MRI from Diseased & Healthy Images of Any Modality

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) &

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025)

Modality-Agnostic Synthesis | Bridging Diseased → Healthy: *Beyond Annotations*

UNA's Healthy-to-Diseased Generation Naturally Enables Supervised Learning

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) &

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025)

Robustness & Generalizability | Image Modality & Anomaly Appearance (Simulations)

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025)

Robustness & Generalizability | Image Modality & Anomaly Appearance (Simulations)

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) @

Robustness & Generalizability | Image Modality & Anomaly Appearance (Simulations)

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) @

Robustness & Generalizability | Image Modality & Anomaly Appearance (Stroke)

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) 🗗

Robustness & Generalizability | Image Modality & Anomaly Appearance (Stroke)

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025)

Robustness & Generalizability | Image Modality & Anomaly Appearance (Stroke)

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025)

Robustness & Generalizability | Anomaly Detection Beyond Annotations

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) C

Robustness & Generalizability | Anomaly Detection Beyond Annotations

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025)

Robustness & Generalizability | Anomaly Detection Beyond Annotations

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) C

[Summary] Modality-Agnostic Foundation Model | Ready-to-Use Software @ FreeSurfer

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024)

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) 2

P. Liu et al.: A Modality-Agnostic Multi-Task Foundation Model for Human Brain Imaging. Under Review at IEEE TMI (2025) 🕫

[Summary] Modality-Agnostic Foundation Model | Ready-to-Use Software @ FreeSurfer

- P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024)
- P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) C
- P. Liu et al.: A Modality-Agnostic Multi-Task Foundation Model for Human Brain Imaging. Under Review at IEEE TMI (2025) &
[Summary] Modality-Agnostic Foundation Model | Ready-to-Use Software @ FreeSurfer

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

- P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024)
- P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) C
- P. Liu et al.: A Modality-Agnostic Multi-Task Foundation Model for Human Brain Imaging. Under Review at IEEE TMI (2025) &

Robust and Interpretable Learning for Modern Healthcare

1 Introduction

2 Physics-Driven Learning For Interpretable Diagnosis

3 Modality-Agnostic Foundation Models Towards Accessible Healthcare

4 Future Directions and Collaborations

Research Summary | *Modeling & Applications*

Modeling

Physics-Driven Learning of Time-Series Dynamics

Domain Randomization & Modality-Agnostic Learning

Research Summary | *Modeling & Applications*

[*Future*] Research Summary | *Modeling & Applications*

Domain Randomization & Modality-Agnostic Learning Robust & Generalized Analysis for Medical Imaging

[Future] Research Summary | Physics-Driven Learning of Time-Series Dynamics

Peirong Liu

Robust and Interpretable Learning for Modern Healthcare

[Future] Physics-Driven Learning of Time-Series Dynamics | Multimodal Learning

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry

Sensor Data, E.g., Electroencephalogram (EEG)

Angiography (MR) for 3D Vascular Modeling

Incorporating Information from Multiple Modalities

S. Çimen et al.: Reconstruction of Coronary Arteries from X-ray Angiography. Medical Image Analysis (2016) &

K. Singhal et al.: Large Language Models Encode Clinical Knowledge. Nature (2023) 27

[Future] Physics-Driven Learning of Time-Series Dynamics | Dynamic Modeling

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation

1/2 - From Diagnosis to Treatment

X. Hu, K. Gopinath, P. Liu et al.: Hierarchical Uncertainty Estimation for Learning-Based Registration in Neuroimaging. ICLR (2025) &

E. Antonelo et al.: Physics-Informed Neural Nets for Control of Dynamical Systems. Neurocomputing (2024) 🗃

[Future] Physics-Driven Learning of Time-Series Dynamics | Dynamic Modeling

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation

Machine Perfusion in Liver: Vein & Artery Loops 🖸

2/2 - From In Vivo to Ex Vivo

S. D. St Peter et al.: Liver and Kidney Preservation by Perfusion. The Lancet (2002) 🖸

[&]quot;Liver in a Box" Offers Potential for Providing Liver Transplant to More Patients. Mayo Clinic News (2024) &

[Future] Physics-Driven Learning of Time-Series Dynamics | Treatment & Surgery

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation
- **Applications**
- **Treatment & Surgery**

1) Interventional Therapy and 2) Ex Vivo Perfusion

"Liver in a Box" Offers Potential for Providing Liver Transplant to More Patients. Mayo Clinic News (2024) C

A. Bagai et al.: Reperfusion Strategies in Acute Coronary Syndromes. Circulation Research (2014) 🗃

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation

Applications

Treatment & Surgery
 Organs & Diseases

Common Type of Cardiovascular Diseases (CVDs)

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (★ Oral) © P. Liu et al.: Deep Decomposition for Stochastic Normal-Abnormal Transport. CVPR (2022) (★ Oral) ©

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation

Applications

Treatment & Surgery
Organs & Diseases

Common Type of Cardiovascular Diseases (CVDs)

G. Bastarrika et al.: CT of Coronary Artery Disease. Radiology (2009) C

O. R. Coelho-Filho et al.: MR Myocardial Perfusion Imaging. Radiology (2013) 2

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation

Applications

Treatment & Surgery
Organs & Diseases

Internal Human Organs C

G. Bastarrika et al.: CT of Coronary Artery Disease. Radiology (2009) C

O. R. Coelho-Filho et al.: MR Myocardial Perfusion Imaging. Radiology (2013) C

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation

Applications

Treatment & Surgery
Organs & Diseases

Internal Human Organs C

S. H. Kim et al.: CT Perfusion of the Liver: Principles and Applications in Oncology. Radiology (2014) C

S. R. Hopkins et al.: Imaging Lung Perfusion. Journal of Applied Physiology (2012)

[Future] Physics-Driven Learning of Time-Series Dynamics | Tracking & Prediction

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation

Applications

- Treatment & Surgery
- Organs & Diseases
- Tracking & Prediction
 - ► Representations: Voxels, Points, Meshes, ...

1/3 - Fiber Tracking From Diffusion Tensors ☑

P. Liu et al.: Deep Modeling of Growth Trajectories for Longitudinal Prediction of Missing Infant Cortical Surfaces. IPMI (2019) (★ Oral) © Z. Shen, J. Feydy, P. Liu et al.: Accurate Point Cloud Registration with Robust Optimal Transport. NeurIPS (2021) ©

[Future] Physics-Driven Learning of Time-Series Dynamics | Tracking & Prediction

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation

Applications

- Treatment & Surgery
- Organs & Diseases
- Tracking & Prediction
 - ► Representations: Voxels, Points, Meshes, ...

Longitudinal Surface Prediction

Point Cloud Registration

2/3 - Surface and Point Cloud Representations

P. Liu et al.: Deep Modeling of Growth Trajectories for Longitudinal Prediction of Missing Infant Cortical Surfaces. IPMI (2019) (★ Oral) & Z. Shen, J. Feydy, P. Liu et al.: Accurate Point Cloud Registration with Robust Optimal Transport. NeurIPS (2021) &

[Future] Physics-Driven Learning of Time-Series Dynamics | Tracking & Prediction

Modeling

- Multimodal Learning
 - ► Vision + Text/Signal/...
 - ► Vision + Geometry
- Dynamic Modeling
 - ► Prediction & Uncertainty Estimation

Applications

- Treatment & Surgery
- Organs & Diseases
- Tracking & Prediction
 - ► Representations: Voxels, Points, Meshes, ...

Blood Cells Tracking 🖉

Optical Flow for Object Tracking 🗗

Non-Rigid Image Registration 🖾

Weather and Climate Forecast 🖾

3/3 - Fluid-Based Modeling and Applications

J. B. Freund: Numerical Simulation of Flowing Blood Cells. Annual Review of Fluid Mechanics (2014)

P. Lippe et al.: PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers. NeurIPS (2023) C

[Future] Research Summary | Modality-Agnostic Learning Towards Accessible Healthcare

Applications Currently Sunnorted Tarks-Innuts Motivate J Image Synthesis (TIW MRI T2W MRI FLAIR CT) / Super-Resolution ✓ Atlas Registration FreeSurfer J Surface Extraction J Brain Age Estimation Anomaly Prob (P) MR/CT/. J Rias Field Correction J Anatomy Segmentation Anomaly-Encoded Modulity-Armostic Learning Domain Randomization Darker on Anatomical Domain Randomization T1w-Mimicked Samples T2w/FLAIR-Mimicked Samples (LICU) Apply ✓ Out-of-the-Box Usage On-the-Fb Label (L Anomaly-Encoded Synthetic Samples of Random Modality ✓ Offline Fine-Tuning Sentheth **Domain Randomization & Modality-Agnostic Learning Robust & Generalized Analysis for Medical Imaging**

Modeling

Clinical Data

Generative Modeling | Domain Adaptation | Translational Research

Modality-Agnostic Learning via Anomaly-Encoded Data Generation

Synthetic Data

Data Generation & Modeling

Synthetic
Generative Modeling
Domain Adaptation

🗖 Real

N. Charon & L. Younes: Shape Spaces: From Geometry to Biological Plausibility. Handbook of Math Models and Algorithms in CV and Imaging (2022) @ X. Zhao et al.: A Collection of Domain Adaptation Research. Github Repository Paper List (2024) G

Data Generation & Modeling

Generative Modeling Domain Adaptation

Real

► Spatial

Examples of Lesion Types & Shapes on T2w MRIs

N. Charon & L. Younes: Shape Spaces: From Geometry to Biological Plausibility. Handbook of Math Models and Algorithms in CV and Imaging (2022) & X. Zhao et al.: A Collection of Domain Adaptation Research. Github Repository Paper List (2024) &

Data Generation & Modeling MIDLINE SHIFT Synthetic Generative Modeling Domain Adaptation ► Real ► Spatial ► Spatiotemporal

1/2 - The Progression of Brain Tumors Pushes & Displaces Surrounding Healthy Tissue

N. Charon & L. Younes: Shape Spaces: From Geometry to Biological Plausibility. Handbook of Math Models and Algorithms in CV and Imaging (2022) & Y. Yang et al.: A Survey on Diffusion Models for Time Series, Spatiotemporal Data and Tabular Data. Github Repository Paper List (2024) &

Data Generation & Modeling

Generative Modeling Domain Adaptation

► Spatial

► Spatiotemporal

2/2 - Lesions *Worsen* in Hours/Days after Stroke Onset, Where Penumbra Remains *Viable for a Limited Time* ♂

H. Saber et al.: Infarct Progression in the Early and Late Phases of Acute Ischemic Stroke. Neurology (2021) C

Y. Yang et al.: A Survey on Diffusion Models for Time Series, Spatiotemporal Data and Tabular Data. Github Repository Paper List (2024) &

[Future] Modality-Agnostic Learning | General Analysis for Diseased Images

Real

Data Generation & Modeling

Generative Modeling Domain Adaptation

► Spatial ► Spatiotemporal

Broader Applications • General Analysis for Diseased Images

Most Analysis Tools Suffer from *Performance Drops* Given *Low-Quality & Diseased* Images

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) & P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) &

[Future] Modality-Agnostic Learning | Accessible MRI Diagnosis

Data Generation & Modeling

- Generative Modeling Domain Adaptation
- ► Spatial ► Spatiotemporal

Broader Applications

General Analysis for Diseased Images
 Accessible MRI Diagnosis

Low-Field MRI Enables *Affordable & Bedside* Diagnosis, Yet Suffers from *Less Detailed* Imaging Quality

Real

N. R. Parasuram et al.: Future of Neurology & Technology: Neuroimaging Made Accessible Using Low-Field, Portable MRI. Neurology (2023) & T. C. Arnold et al.: Low-Field MRI: Clinical Promise and Challenges. Journal of Magnetic Resonance Imaging (2023) &

[Future] Modality-Agnostic Learning | Translational Research Delivering Clinical Impact

Data Generation & Modeling

- Generative Modeling Domain Adaptation
- ► Spatial ► Spatiotemporal

Broader Applications

- General Analysis for Diseased Images
- Accessible MRI Diagnosis

► Translational Research: Assessment, Evaluation, and Analysis of Clinical Impact

P. Shah et al.: Artificial Intelligence and Machine Learning in Clinical Development: A Translational Perspective. NPJ digital medicine (2019) & C. P. Austin: Opportunities and Challenges in Translational Science. Clinical and Translational Science (2021) &

Introduction

[*Future*] *Data* ≒ Reliable & Generalized *Model* ≒ Safe & Accessible *Healthcare*

Introduction

[*Future*] *Data* ≒ Reliable & Generalized *Model* ≒ Safe & Accessible *Healthcare*

[Future] External Funding Sources | Advanced Modeling for Healthcare Applications

[Future] External Funding Sources | Advanced Modeling for Healthcare Applications

[Future] Towards Reliable & Accessible Healthcare with AI

Thank You !

pliu17@mgh.harvard.edu

Pobuet and	Interpretak	le Leornin	a for Mod	arn Uaalth	core (Ann	andiv)	
PDE Solver		PIANO	YETI	SONATA			Misc

- 1 PyTorch PDE Solver Toolbox
- 2 Brain Advection-Diffusion Synthesis
- 3 PIANO
- 4 YETI
- 5 SONATA
- 6 HARP

7 Brain-ID

8 UNA

9 Miscellaneous

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Mass Transport of Tracer | Governing Equation - Advection-Diffusion

$$\frac{\partial C}{\partial t} = \frac{\partial C}{\partial t} \bigg|_{Adv} + \frac{\partial C}{\partial t} \bigg|_{Diff} \quad s.t. \text{ Boundary Conditions (B.C.)}$$

- Advection := $-\nabla \cdot (\mathbf{V} C)$
 - ► $\mathbf{V} := V(\mathbf{x}) = (V^x(\mathbf{x}), V^y(\mathbf{x}), V^z(\mathbf{x}))^T \in \mathbb{R}^3$
 - Assumption: Incompressible blood flow $\Leftrightarrow \nabla \cdot \mathbf{V} = 0$

*
$$C = C(\mathbf{x}, t)$$
: Tracer Concentration; $\mathbf{x} = (x, y, z) \in \Omega \subset \mathbb{R}^3$; $t = 0, 1, ..., T$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mass Transport of Tracer | Governing Equation - Advection-Diffusion <td

$$\frac{\partial C}{\partial t} = -\mathbf{V} \cdot \nabla C + \frac{\partial C}{\partial t} \bigg|_{Diff} \quad s.t. \quad \text{Boundary Conditions (B.C.)}$$

• Advection := $-\nabla \cdot (\mathbf{V} C) (= -\nabla \cdot \mathbf{V} C - \mathbf{V} \cdot \nabla C) \Rightarrow -\mathbf{V} \cdot \nabla C$

- ► **V** := $V(\mathbf{x}) = (V^x(\mathbf{x}), V^y(\mathbf{x}), V^z(\mathbf{x}))^T \in \mathbb{R}^3$
- Assumption: Incompressible blood flow $\Leftrightarrow \nabla \cdot \mathbf{V} = 0$

*
$$C = C(\mathbf{x}, t)$$
: Tracer Concentration; $\mathbf{x} = (x, y, z) \in \Omega \subset \mathbb{R}^3$; $t = 0, 1, ..., T$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Mass Transport of Tracer | Governing Equation - Advection-Diffusion

$$\frac{\partial C}{\partial t} = -\mathbf{V} \cdot \nabla C + \nabla \cdot (\mathbf{D} \nabla C) \quad s.t. \text{ Boundary Conditions (B.C.)}$$

• Advection :=
$$-\nabla \cdot (\mathbf{V}C) (= -\nabla \cdot \mathbf{V}C - \mathbf{V} \cdot \nabla C) \Rightarrow -\mathbf{V} \cdot \nabla C$$

- ► $\mathbf{V} := V(\mathbf{x}) = (V^x(\mathbf{x}), V^y(\mathbf{x}), V^z(\mathbf{x}))^T \in \mathbb{R}^3$
- Assumption: Incompressible blood flow $\Leftrightarrow \nabla \cdot \mathbf{V} = 0$

■ Diffusion :=
$$\nabla \cdot (\mathbf{D} \nabla C)$$

► $\mathbf{D} := D(\mathbf{x}) = \begin{bmatrix} D^{xx} & D^{xy} & D^{xz} \\ D^{xy} & D^{yy} & D^{yz} \\ D^{xz} & D^{yz} & D^{zz} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$
► Assumption: \mathbf{D} is symmetric positive semi-definite (PSD)

*
$$C = C(\mathbf{x}, t)$$
: Tracer Concentration; $\mathbf{x} = (x, y, z) \in \Omega \subset \mathbb{R}^3$; $t = 0, 1, ..., T$

PDE Solver		PIANO	YETI	SONATA	HARP		UNA	Misc		
Advection-Diffusion Solvers Toolbox in PyTorch <i>First-Order Upwind</i> Scheme in 3D										

Given $C = (C_{i,j,k})_{N_x \times N_y \times N_z}$ with uniformly distributed mesh sizes Δx , Δy , Δz :
PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Advection-Diffusion Solvers Toolbox in PyTorch First-Order Upwind Scheme in 3D

Given $C = (C_{i,j,k})_{N_x \times N_y \times N_z}$ with uniformly distributed mesh sizes Δx , Δy , Δz :

x direction:
$$\left. \frac{\partial C}{\partial x} \right|_{i,j,k} = \begin{cases} \frac{C_{i,j,k} - C_{i-1,j,k}}{\Delta x}, & V_{i,j,k}^x \ge 0\\ \frac{C_{i+1,j,k} - C_{i,j,k}}{\Delta x}, & V_{i,j,k}^x < 0 \end{cases}$$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Advection-Diffusion Solvers Toolbox in PyTorch First-Order Upwind Scheme in 3D Image: Comparison of the second second

Given $C = (C_{i,j,k})_{N_x \times N_y \times N_z}$ with uniformly distributed mesh sizes Δx , Δy , Δz :

$$x \text{ direction:} \quad \frac{\partial C}{\partial x}\Big|_{i,j,k} = \begin{cases} \frac{C_{i,j,k} - C_{i-1,j,k}}{\Delta x}, & V_{i,j,k}^x \ge 0\\ \frac{C_{i+1,j,k} - C_{i,j,k}}{\Delta x}, & V_{i,j,k}^x < 0 \end{cases}$$
$$y \text{ direction:} \quad \frac{\partial C}{\partial y}\Big|_{i,j,k} = \begin{cases} \frac{C_{i,j,k} - C_{i,j-1,k}}{\Delta y}, & V_{i,j,k}^y \ge 0\\ \frac{C_{i,j+1,k} - C_{i,j,k}}{\Delta y}, & V_{i,j,k}^y < 0 \end{cases}$$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Advection-Diffusion Solvers Toolbox in PyTorch First-Order Upwind Scheme in 3D VIA Misc

Given $C = (C_{i,j,k})_{N_x \times N_y \times N_z}$ with uniformly distributed mesh sizes Δx , Δy , Δz :

$$x \text{ direction:} \quad \frac{\partial C}{\partial x}\Big|_{i,j,k} = \begin{cases} \frac{C_{i,j,k} - C_{i-1,j,k}}{\Delta x}, & V_{i,j,k}^x \ge 0\\ \frac{C_{i+1,j,k} - C_{i,j,k}}{\Delta x}, & V_{i,j,k}^x < 0 \end{cases}$$
$$y \text{ direction:} \quad \frac{\partial C}{\partial y}\Big|_{i,j,k} = \begin{cases} \frac{C_{i,j,k} - C_{i,j-1,k}}{\Delta y}, & V_{i,j,k}^y \ge 0\\ \frac{C_{i,j+1,k} - C_{i,j,k}}{\Delta y}, & V_{i,j,k}^y < 0 \end{cases}$$
$$z \text{ direction:} \quad \frac{\partial C}{\partial z}\Big|_{i,j,k} = \begin{cases} \frac{C_{i,j,k} - C_{i,j-1,k}}{\Delta y}, & V_{i,j,k}^y \ge 0\\ \frac{C_{i,j+1,k} - C_{i,j,k}}{\Delta y}, & V_{i,j,k}^y < 0 \end{cases}$$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Advection-Diffusion Solvers Toolbox in PyTorch | *Nested Forward/Backward* Difference

(df(db)) = (db(df)) = (ddc)

Proof.

For $X = [X_1, X_2, ..., X_n]$, Let: $ddX := (df(db)) \cdot X$

For i = 1, ..., n:

$$ddX_i = X'_{i+1} - X'_i$$

= $(X_{i+1} - X_i) - (X_i - X_{i-1}) \iff (db(df)) \cdot X$
= $X_{i+1} - 2X_i + X_{i-1} \iff (ddC) \cdot X$

$$\frac{\partial C}{\partial t} = -\mathbf{V} \cdot \nabla C + \nabla \cdot (D \nabla C) \quad s.t. \quad \frac{\partial C}{\partial \mathbf{n}} = 0$$

$$\frac{\partial C}{\partial t} = -\mathbf{V} \cdot \nabla C + \nabla \cdot (D \nabla C) \quad s.t. \quad \frac{\partial C}{\partial \mathbf{n}} = 0$$

Discretize in space

$$\frac{\partial C}{\partial t} = -\mathbf{V} \cdot \nabla C + \nabla \cdot (D \nabla C) \quad s.t. \quad \frac{\partial C}{\partial \mathbf{n}} = 0$$

Discretize in space

► First order upwind scheme for advection $-\mathbf{V} \cdot \nabla C_t \square$

$$\frac{\partial C}{\partial t} = -\mathbf{V} \cdot \nabla C + \nabla \cdot (D \nabla C) \quad s.t. \quad \frac{\partial C}{\partial \mathbf{n}} = 0$$

Discretize in space

- ► First order upwind scheme for advection $-\mathbf{V} \cdot \nabla C_t \square$
- ▶ Nested forward/backward difference for diffusion $\nabla \cdot (D \nabla C_t) \square$

- Discretize in space
 - ► First order upwind scheme for advection $-\mathbf{V} \cdot \nabla C_t \square$
 - ▶ Nested forward/backward difference for diffusion $\nabla \cdot (D \nabla C_t) \square$
- March in time

- Discretize in space
 - ► First order upwind scheme for advection $-\mathbf{V} \cdot \nabla C_t \square$
 - ► Nested forward/backward difference for diffusion $\nabla \cdot (D \nabla C_t) \square$
- March in time
 - ► Runge-Kutta-Fehlberg method (Adaptive time-step control) 🖒

■ Discretize in space

- ► First order upwind scheme for advection $-\mathbf{V} \cdot \nabla C_t \square$
- ► Nested forward/backward difference for diffusion $\nabla \cdot (D \nabla C_t) \square$
- March in time
 - ► Runge-Kutta-Fehlberg method (Adaptive time-step control) 🖒

- Discretize in space
 - ► First order upwind scheme for advection $-\mathbf{V} \cdot \nabla C_t \square$
 - ► Nested forward/backward difference for diffusion $\nabla \cdot (D \nabla C_t) \square$
- March in time
 - ► Runge-Kutta-Fehlberg method (Adaptive time-step control) 🖒

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Advection-Diffusion Solvers Toolbox in PyTorch | Numerical Flow - *CFL* Condition

¹S. Gottlieb et al.: Strong Stability Preserving Properties of Runge-Kutta Time Discretization Methods for Linear Constant Coefficient Operators (2003) C

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Advection-Diffusion Solvers Toolbox in PyTorch | Numerical Flow - *CFL* Condition

Courant-Friedrichs-Lewy (CFL) condition: ☑

$$c = \sum_{ax \in \{x, y, z\}} \frac{V^{ax} \Delta t}{\Delta ax} \le c_{\max} \quad (\approx 1 \text{ for explicit method})$$

¹S. Gottlieb et al.: Strong Stability Preserving Properties of Runge-Kutta Time Discretization Methods for Linear Constant Coefficient Operators (2003) &

Courant-Friedrichs-Lewy (CFL) condition: ☑

$$c = \sum_{ax \in \{x, y, z\}} \frac{V^{ax} \,\delta t}{\Delta ax} \le c_{\max} \quad (\approx 1 \text{ for explicit method})$$

¹S. Gottlieb et al.: Strong Stability Preserving Properties of Runge-Kutta Time Discretization Methods for Linear Constant Coefficient Operators (2003) &

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Advection-Diffusion Solvers Toolbox in PyTorch | Numerical Flow - Method of Lines

■ Discretize in space

- ► First order upwind scheme for advection $-\mathbf{V} \cdot \nabla C_t \square$
- ► Nested forward/backward difference for diffusion $\nabla \cdot (D \nabla C_t) \square$
- March in time
 - ► Runge-Kutta-Fehlberg method (Adaptive time-step control)

PDE SolverGeneratorPIANOYETISONATAHARPBrain-IDUNAMiscAdvection-Diffusion Solvers Toolbox in PyTorch (1D, 2D, 3D) $\frac{\partial C}{\partial t}$ = advection and/or diffusion s.t. Boundary Condition(s)

Advection-Diffusion

PDEs Toolbox

Advection-Diffusion

PDEs Toolbox

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Advection-Diffusion Solvers Toolbox in PyTorch (1D, 2D, 3D)

 PDE Solver
 Generator
 PIANO
 YETI
 SONATA
 HARP
 Brain-ID
 UNA
 Misc

 Robust and Interpretable Learning for Modern Healthcare (Appendix)

1 PyTorch PDE Solver Toolbox

- **2** Brain Advection-Diffusion Synthesis
- 3 PIANO
- 4 YETI
- 5 SONATA
- 6 HARP

7 Brain-ID

8 UNA

9 Miscellaneous

PDE Solver	Generator	PIANO	TEIL	SUNATA	HARP	Brain-ID	UNA		
Brain Advection-Diffusion Synthesis <i>Dataset</i> (Link to Simulation & Pre-Training)									

IXI brain dataset¹:

- Total: 200 patients
- T1-/T2-weighted images, MR angiography (MRA) image ⇒ Velocity vector fields simulation
- Diffusion weighted images (DWI) with 15 directions ⇒ Diffusion tensor fields simulation
- Brain advection-diffusion time-series: length $N_T = 40$, time interval $\Delta t = 0.1 s$

¹Dataset available for download at http://brain-development.org/ixi-dataset/ 🗗

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Brain Advection-Diffusion Synthesis | Velocity (Link to Simulation & Pre-Training)

MRA

 $^{{}^{1}}Code \ in \ https://github.com/InsightSoftwareConsortium/ITKTubeTK/tree/master/examples/MRA-Head$

²A. F. Frangi et al.: Multiscale Vessel Enhancement Filtering. MICCAI (1998)

¹Code in https://github.com/InsightSoftwareConsortium/ITKTubeTK/tree/master/examples/MRA-Head

²A. F. Frangi et al.: Multiscale Vessel Enhancement Filtering. MICCAI (1998)

¹Code in https://github.com/InsightSoftwareConsortium/ITKTubeTK/tree/master/examples/MRA-Head

²A. F. Frangi et al.: Multiscale Vessel Enhancement Filtering. MICCAI (1998)

¹Code in https://github.com/InsightSoftwareConsortium/ITKTubeTK/tree/master/examples/MRA-Head

²A. F. Frangi et al.: Multiscale Vessel Enhancement Filtering. MICCAI (1998)

PDE Solver	Generator	PIANO	YEIL	SONATA	HARP	Brain-ID	UNA			
Brain Advection-Diffusion Synthesis <i>Diffusion</i> (Link to Simulation & Pre-Training)										

Figure: Diffusion simulation workflow.

<code>'Dipy:</code> python library for MR diffusion imaging analysis (Code in <code>https://github.com/dipy/dipy</code> $\tt C$)

Figure: Diffusion simulation workflow.

التا py: python library for MR diffusion imaging analysis (Code in https://github.com/dipy/dipy التاريخ)

Figure: Diffusion simulation workflow.

 1 Dipy: python library for MR diffusion imaging analysis (Code in https://github.com/dipy/dipy C)
PDE Solver	Generator	PIANO	YETI	SONATA				Misc
Brain Adv	ection-Diffus	sion Synth	esis <i>Tim</i>	e <mark>Serie</mark> s (L	ink to Sim	ulation & Pi	e-Training	g)

PDE Solver	Generator	PIANO	YETI	SONATA			Misc
Brain Adv	ection-Diffus	sion Synth	esis <i>Tim</i>	e Series (L	ink to Pre	-Training)	

Figure: Example brain advection-diffusion time series. Top: axial slice; Middle: coronal slice; Bottom: sagittal slice.

Dalaret en	.1 T	1. т	N 1	TT 141-	(h	1!)	
PDE Solver	Generator	PIANO	YETI	SONATA	HARP	Brain-ID	Misc

- **1** PyTorch PDE Solver Toolbox
- 2 Brain Advection-Diffusion Synthesis

3 PIANO

4 YETI

5 SONATA

6 HARP

7 Brain-ID

8 UNA

9 Miscellaneous

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) ♂ P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ♂

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) ♂ P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ♂

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Perfusion Imaging via Advection-Diffusion | Quantitative Comparisons

Box plots of relative mean values (μ^r), relative standard deviation (σ^r) and t-values of perfusion feature maps.

c-Lesion: contralateral region of the lesion | CBF, CBV, ADC: conventional voxel-wise perfusion feature maps

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (* Oral) C

P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021)

P. Liu et al.: Discovering Hidden Physics Behind Transport Dynamics. CVPR (2021) (* Oral)

 PDE Solver
 Generator
 PIANO
 YETI
 SONATA
 HARP
 Brain-ID
 UNA
 Mise

 ISLES2017-MRP:
 PIANO-Estimated Concentration Time-Series (Link to Framework)

 C_t \widehat{C}_t

 C_t : Concentration map computed from acquired MR perfusion images

 \widehat{C}_t : Predicted concentration map from estimated parameters V and D

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) & P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) &

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc ISLES2017-MRP: Quantitative Comparison (Box Plots) (Link to Framework & Metrics)

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) ♂ P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ♂

Robust and Interpretable Learning for Modern Healthcare (Appendix)

PDE Solver		PIANO	YETI	SONATA				Misc
Comparison	n Metrics	Contralater	al (Link t	o Table, B	ox Plots i	in Main & A	ppendix)	
ROI:	lesion are	ea						

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) & P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) &

 PDE Solver
 Generator
 PIANO
 YETI
 SONATA
 HARP
 Brain-ID
 UNA
 Misc

 Comparison Metrics | Contralateral (Link to Table, Box Plots in Main & Appendix)
 Rois
 Issue (Link to Table, Box Plots in Main & Appendix)
 Note

cROI: corresponding contralateral (midline of the cerebral hemispheres as axis) area of ROI in the unaffected side

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) ♂ P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ♂

PTANO Comparison Metrics | *Contralateral* (Link to Table, Box Plots in Main & Appendix) ROI lesion area cROI: corresponding contralateral (midline of the cerebral hemispheres as axis) area of ROI in the unaffected side Relative value of ROI (value^{*r*}_{ROI}) = value_{ROI}/value_{cROI}

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) ♂ P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ♂

PTANO Comparison Metrics | *Contralateral* (Link to Table, Box Plots in Main & Appendix) ROI lesion area cROI: corresponding contralateral (midline of the cerebral hemispheres as axis) area of ROI in the unaffected side Relative value of ROI (value_{ROI}) = value_{ROI}/value_{cROI} Metrics of feature maps in ROI: Relative mean ($\mu_{ROI}^r \in [0, 1]$): $\mu_{\text{POI}}^r = min \{ \frac{\text{mean in ROI}}{\text{mean in cROI}}, \frac{\text{mean in cROI}}{\text{mean in ROI}} \}$ RO cRO

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) ♂ P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ♂

PTANO Comparison Metrics | *Contralateral* (Link to Table, Box Plots in Main & Appendix) ROI lesion area cROI: corresponding contralateral (midline of the cerebral hemispheres as axis) area of ROI in the unaffected side Relative value of ROI (value_{ROI}) = value_{ROI}/value_{cROI} Metrics of feature maps in ROI: **Relative mean** $(\mu_{POI}^r \in [0, 1])$: $\mu_{\text{POI}}^r = min \left\{ \frac{\text{mean in ROI}}{\text{mean in cROI}}, \frac{\text{mean in cROI}}{\text{mean in ROI}} \right\}$ RO cRO

Absolute t-value between ROI, cROI (|t|)

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) ♂ P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) ♂

PTANO Comparison Metrics | *Contralateral* (Link to Table, Box Plots in Main & Appendix) ROI lesion area cROI: corresponding contralateral (midline of the cerebral hemispheres as axis) area of ROI in the unaffected side Relative value of ROI (value_{ROI}) = value_{ROI}/value_{cROI} Metrics of feature maps in ROI: **Relative mean** $(\mu_{POI}^r \in [0, 1])$: $\mu_{\text{POI}}^r = min \left\{ \frac{\text{mean in ROI}}{\text{mean in cROI}}, \frac{\text{mean in cROI}}{\text{mean in ROI}} \right\}$ cRO

- ROI • Absolute • Mean prin (=min)
 - Absolute t-value between ROI, cROI (|t|)
 - Mean principal diffusion angle deviation (\angle) : $\angle = min \{ \angle (\pm \mathbf{U}_{prin}(\text{ROI}), \mathbf{U}_{prin}^{c}(\text{cROI})) \}$ (* $\mathbf{U}_{prin}^{c}(\text{cROI})$: \mathbf{U}_{prin} mirrored from cROI)

P. Liu et al.: PIANO: Perfusion Imaging via Advection-Diffusion. MICCAI (2020) (★ Oral) & P. Liu et al.: Perfusion Imaging: An Advection Diffusion Approach. IEEE TMI (2021) &

Robust and	Interpretal	hle Learnin	g for Mod	ern Health	care (Ann	endix)	
PDE Solver		PIANO	YETI	SONATA			Misc

- **1** PyTorch PDE Solver Toolbox
- 2 Brain Advection-Diffusion Synthesis
- **3 PIANO**
- 4 YETI
- 5 SONATA
- 6 HARP

7 Brain-ID

8 UNA

9 Miscellaneous

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Mass Transport of Tracer | Patch-Based Advection-Diffusion (Link to Full Equation)

$$\frac{\partial C(\mathbf{x},t)}{\partial t} = \frac{\partial C(\mathbf{x},t)}{\partial t} \bigg|_{Adv} + \frac{\partial C(\mathbf{x},t)}{\partial t} \bigg|_{Diff}$$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Mass Transport of Tracer | Patch-Based Advection-Diffusion (Link to Full Equation)

$$\frac{\partial C(\mathbf{x},t)}{\partial t} = \frac{\partial C(\mathbf{x},t)}{\partial t} \bigg|_{Adv} + \frac{\partial C(\mathbf{x},t)}{\partial t} \bigg|_{Diff}$$

• Advection := $-\nabla \cdot (\mathbf{V}C)$

►
$$\mathbf{V} := (V^x, V^y, V^z)^T \in \mathbb{R}^3$$

(V: incompressible fluid flow)

*
$$C(\mathbf{x}, t)$$
: CAs concentration $(\forall \mathbf{x} = (x, y, z)^T \in \Omega \subset \mathbb{R}^3, \forall t \in \{t_0, t_1, \dots, t_{nT}\})$

Mara Tarana		Det al	DanalA	I	<u>с</u> (Т	inter Dell D	
PDE Solver	Generator	PIANO	YETI	SONATA			Misc

* $C(\mathbf{x}, t)$: CAs concentration $(\forall \mathbf{x} = (x, y, z)^T \in \Omega \subset \mathbb{R}^3, \forall t \in \{t_0, t_1, \dots, t_{nT}\})$

		n l Datal	Durida	I	ф (Т	1.1. 4. D.11 D	·····	
PDE Solver	Generator	PIANO	YETI	SONATA	HARP	Brain-ID		Misc

 $\frac{\partial C(\mathbf{x},t)}{\partial t} = \frac{\partial C(\mathbf{x},t)}{\partial t} \bigg|_{A d v} + \frac{\partial C(\mathbf{x},t)}{\partial t} \bigg|_{Diff}$ • Advection := $-\nabla \cdot (\mathbf{V}C)$ ► $\mathbf{V} := (V^x, V^y, V^z)^T \in \mathbb{R}^3$ (V: incompressible fluid flow) ■ Diffusion := $\nabla \cdot (\mathbf{D} \nabla C)$ $\blacktriangleright \mathbf{D} := \begin{bmatrix} D^{xx} & D^{xy} & D^{xz} \\ D^{yx} & D^{yy} & D^{yz} \\ D^{zx} & D^{zy} & D^{zz} \end{bmatrix} \in \mathbb{R}^{3 \times 3}$ (**D**: positive semi-definite (PSD)) ■ s.t. *Patch-Based* Cauchy B.C.

* $C(\mathbf{x}, t)$: CAs concentration $(\forall \mathbf{x} = (x, y, z)^T \in \Omega \subset \mathbb{R}^3, \forall t \in \{t_0, t_1, \dots, t_{nT}\})$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Mass Transport of Tracer | Patch-Based Boundary Conditions (Link to Full Equation)

- Cauchy boundary conditions (B.C.)
 - ► Dirichlet B.C.

► Zero-Neumann B.C. (Example)

* $\partial \Omega_p$: boundaries of patch Ω_p ; $\widehat{C}_p^{t_i}$: predicted concentration at $t_i (i = 1, ..., T_{pd})$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Mass Transport of Tracer | Patch-Based Boundary Conditions (Link to Full Equation)

- Cauchy boundary conditions (B.C.)
 - ► Dirichlet B.C.

$$\widehat{C}_{p}^{t_{i}}\big|_{\partial\Omega_{p}} := C_{p}^{t_{i}}\big|_{\partial\Omega_{p}}$$

► Zero-Neumann B.C. (Example)

* $\partial \Omega_p$: boundaries of patch Ω_p ; $\hat{C}_p^{t_i}$: predicted concentration at $t_i (i = 1, ..., T_{pd})$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Mass Transport of Tracer | Patch-Based Boundary Conditions (Link to Full Equation)

- Cauchy boundary conditions (B.C.)
 - ► Dirichlet B.C.

$$\widehat{C}_{p}^{t_{i}}\big|_{\partial\Omega_{p}} := C_{p}^{t_{i}}\big|_{\partial\Omega_{p}}$$

► Zero-Neumann B.C. (Example)

$$\frac{\partial \widehat{C}_{p}^{t_{i}}}{\partial \mathbf{n}}\Big|_{\partial \Omega_{p}} := 0$$

* $\partial \Omega_p$: boundaries of patch Ω_p ; $\widehat{C}_p^{t_i}$: predicted concentration at $t_i (i = 1, ..., T_{pd})$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Zero-Neumann Boundary Condition: 1D Example (Link to Full Equation & B.C.)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Zero-Neumann Boundary Condition: 1D Example (Link to Full Equation & B.C.)

$$x_0$$
 x_1 \cdots x_{N-1} x_N

Zero-neumann boundary condition:
$$\frac{\partial f}{\partial x}\Big|_{\{x_0, x_N\}} = 0$$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Zero-Neumann Boundary Condition: 1D Example (Link to Full Equation & B.C.)

$$x_0$$
 x_1 \cdots x_{N-1} x_N

Zero-neumann boundary condition:
$$\frac{\partial f}{\partial x}\Big|_{\{x_0, x_N\}} = 0$$

Approx. of 1st order differential operator $\frac{\partial}{\partial x} \cdot :$

$$\left. \frac{\partial f}{\partial x} \right|_{x_i} \approx \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x}$$
 (Central difference)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Zero-Neumann Boundary Condition: 1D Example (Link to Full Equation & B.C.)

Zero-neumann boundary condition:
$$\frac{\partial f}{\partial x}\Big|_{\{x_0, x_N\}} = 0$$

Approx. of 1^{st} order differential operator $\frac{\partial}{\partial x} \cdot :$

$$\left. \frac{\partial f}{\partial x} \right|_{x_i} \approx \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x}$$
 (Central difference)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Zero-Neumann Boundary Condition: 1D Example (Link to Full Equation & B.C.)

Zero-neumann boundary condition:
$$\frac{\partial f}{\partial x}\Big|_{\{x_0, x_N\}} = 0$$

Approx. of 1^{st} order differential operator $\frac{\partial}{\partial x}$ · :

$$\left. \frac{\partial f}{\partial x} \right|_{x_i} \approx \frac{f(x_{i+1}) - f(x_{i-1})}{2\,\Delta x}$$
 (Central difference)

Set values on ghost cells: $\begin{cases} f(x_{-1}) \coloneqq f(x_1) \\ f(x_{N+1}) \coloneqq f(x_{N-1}) \end{cases}$

 PDE Solver
 Generator
 PIANO
 YETI
 SONATA
 HARP
 Brain-ID
 UNA
 Mise

 Divergence-Free
 Vector
 Representation
 (Link to Framework in Main & Appendix)

Goal: Surjective Mapping

(a) *By definition*, the predicted velocity fields $\mathbf{V} \in \mathcal{H}_{div}(\Omega)$;

(b) The representation covers the <u>entire</u> $\mathcal{H}_{div}(\Omega)$.

Figure: A random vector field (V)

 PDE Solver
 Generator
 PIANO
 YETI
 SONATA
 HARP
 Brain-ID
 UNA
 Mise

 Divergence-Free
 Vector
 Representation
 (Link to Framework in Main & Appendix)

Goal: Surjective Mapping

(a) *By definition*, the predicted velocity fields $\mathbf{V} \in \mathcal{H}_{div}(\Omega)$;

(b) The representation covers the <u>entire</u> $\mathcal{H}_{div}(\Omega)$.

Figure: Represent a divergence-free vector field (V) by the *curl of vector potentials* (Ψ)

 PDE Solver
 Generator
 PIANO
 YETI
 SONATA
 HARP
 Brain-ID
 UNA
 Misc

 Divergence-Free
 Vector
 Representation
 (Link to Framework in Main & Appendix)

Theorem: Divergence-Free Vector via the Curl of Potentials

If $\nabla \cdot \mathbf{V} = 0$ for $\mathbf{V} \in L^p(\Omega)^d$ on $\Omega \subset \mathbb{R}^d$ with smooth boundary $\partial \Omega$, $\exists \Psi \in L^p(\Omega)^\alpha$ ($\alpha = 1(3)$ when d = 2(3)):

$$\mathbf{V} = \nabla \times \boldsymbol{\Psi}, \quad \boldsymbol{\Psi} \cdot \mathbf{n} \big|_{\partial \Omega} = 0, \ \boldsymbol{\Psi} \in L^p(\Omega)^{\alpha}.$$

Figure: Represent a divergence-free vector field (V) by the *curl of vector potentials* (Ψ)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Divergence-Free Vector Representation (Link to Framework in Main & Appendix)

Theorem: Divergence-Free Vector via the Curl of Potentials

If $\nabla \cdot \mathbf{V} = 0$ for $\mathbf{V} \in L^p(\Omega)^d$ on $\Omega \subset \mathbb{R}^d$ with smooth boundary $\partial \Omega$, $\exists \Psi \in L^p(\Omega)^\alpha$ ($\alpha = 1(3)$ when d = 2(3)):

$$\mathbf{V} = \nabla \times \boldsymbol{\Psi}, \quad \boldsymbol{\Psi} \cdot \mathbf{n} \Big|_{\partial \Omega} = 0, \ \boldsymbol{\Psi} \in L^p(\Omega)^{\alpha}$$

Conversely, for $\forall \Psi \in L^p(\Omega)^{\alpha}$: $\nabla \cdot \mathbf{V} = \nabla \cdot (\nabla \times \Psi) = 0$.

Figure: Represent a divergence-free vector field (V) by the *curl of vector potentials* (Ψ)

Symmetric PSD Tensor Representation (Link to Framework in Main & Appendix)

Goal: Represent & learn a PSD tensor via its eigenvalues and eigenvectors:

YETT

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Symmetric PSD Tensor Representation (Link to Framework in Main & Appendix)

How to represent & learn a set of mutually orthogonal eigenvectors ?

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Symmetric PSD Tensor Representation (Link to Framework in Main & Appendix)

Theorem

For \forall tensor $\mathbf{D} \in PSD(n)$, there $\exists \mathbf{B} \in \mathbb{R}^{\frac{n(n-1)}{2}}$, and $\mathbf{\Lambda} \in SD(n)$: $\mathbf{D} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{T}$, $\mathbf{U} = exp(\mathbf{B} - \mathbf{B}^{T}) \in SO(n)$.

- $\mathbb{R}^{\frac{n(n-1)}{2}}$: group of upper triangular matrix with zero diagonal entries - SD(n): group of real diagonal matrices with non-negative entries - SO(n): group of real orthogonal matrices

¹M. Lezcano-Casado: Trivializations for Gradient-Based Optimization on Manifolds. NeurIPS (2019) &

²M. Lezcano-Casado: Cheap Orthogonal Constraints in Neural Networks. ICML (2019) ☑

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Symmetric PSD Tensor Representation (Link to Framework in Main & Appendix)

Theorem

For \forall tensor $\mathbf{D} \in PSD(n)$, there $\exists \mathbf{B} \in \mathbb{R}^{\frac{n(n-1)}{2}}$, and $\mathbf{\Lambda} \in SD(n)$: $\mathbf{D} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{T}$, $\mathbf{U} = exp(\mathbf{B} - \mathbf{B}^{T}) \in SO(n)$. Conversely, for $\forall \mathbf{B} \in \mathbb{R}^{\frac{n(n-1)}{2}}$, $\forall \mathbf{\Lambda} \in SD(n) \rightarrow \mathbf{D} \in PSD(n)$.

- $\mathbb{R}^{\frac{n(n-1)}{2}}$: group of upper triangular matrix with zero diagonal entries - SD(n): group of real diagonal matrices with non-negative entries - SO(n): group of real orthogonal matrices

¹M. Lezcano-Casado: Trivializations for Gradient-Based Optimization on Manifolds. NeurIPS (2019) &

²M. Lezcano-Casado: Cheap Orthogonal Constraints in Neural Networks. ICML (2019) C

Experimental settings:

- "Dynamics-supervised" YETI
 - w/o pre-training
- "VD-supervised" YETI
- "Structure-informed" YETI

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Experimental Setting: "Dynamics-supervised" YETI (Link to Framework in Appendix)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Experimental Setting: "Dynamics-supervised" YETI (Link to Framework in Appendix)

- **I** $\|\mathbf{V}\|_2$: 2-norm map of velocity vector field **V**
- *tr*_{**D**}: trace map of diffusion tensor field **D** (*tr*_{**D**} = $\lambda_1 + \lambda_2 + \lambda_3$)

Experimental settings:

- "Dynamics-supervised" YETI
 - ► w/o pre-training
- "VD-supervised" YETI
 - ▶ w/ pre-training, w/o structure-informed supervision
- "Structure-informed" YETI

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc YETI Comparisons on Pre-Training & Tensor Structure (Link to Framework in Appendix) Image: Comparison of the second s

- $||\mathbf{V}||_2$: 2-norm map of velocity vector field \mathbf{V}
- *tr*_{**D**}: trace map of diffusion tensor field **D** (*tr*_{**D**} = $\lambda_1 + \lambda_2 + \lambda_3$)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc YETI *Comparisons* on Pre-Training & Tensor Structure (Link to Framework in Appendix) Image: Comparison of the second second

- FA: fractional anisotropy $\left(FA = \sqrt{\frac{1}{2}} \sqrt{\frac{(\lambda_1 \lambda_2)^2 + (\lambda_2 \lambda_3)^2 + (\lambda_3 \lambda_1)^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}\right)$
- CbO: colored FA map by the principal eigenvector (\mathbf{U}_{prin}) of **D** (Red = FA $\cdot u_{\text{prin}}^x$; Green = FA $\cdot u_{\text{prin}}^y$; Blue = FA $\cdot u_{\text{prin}}^z$)

Experimental settings:

- "Dynamics-supervised" YETI
 - ► w/o pre-training
- "VD-supervised" YETI
 - ► w/ pre-training, w/o structure-informed supervision
- "Structure-informed" YETI
 - ▶ w/ pre-training, w/ structure-informed supervision

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Experimental Setting: "Structure-informed" YETI (Link to Framework in Appendix)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc YETI *Comparisons* on Pre-Training & Tensor Structure (Link to Framework in Appendix) Misc <

- $||\mathbf{V}||_2$: 2-norm map of velocity vector field \mathbf{V}
- **•** $tr_{\mathbf{D}}$: trace map of diffusion tensor field **D** ($tr_{\mathbf{D}} = \lambda_1 + \lambda_2 + \lambda_3$)

- FA: fractional anisotropy $\left(FA = \sqrt{\frac{1}{2}} \sqrt{\frac{(\lambda_1 \lambda_2)^2 + (\lambda_2 \lambda_3)^2 + (\lambda_3 \lambda_1)^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}} \right)$
- CbO: colored FA map by the principal eigenvector (\mathbf{U}_{prin}) of **D** (Red = FA $\cdot u_{\text{prin}}^x$; Green = FA $\cdot u_{\text{prin}}^y$; Blue = FA $\cdot u_{\text{prin}}^z$)

Figure: Mean relative absolute error (RAE) of "VD-supervised" YETI and "Structure-informed" YETI. Horizontal: training epoch; Vertical: RAE in log scale. Banded curves: the 25% & 75% percentile of the errors among 40 test samples.

Figure: Mean relative absolute error (RAE) of "VD-supervised" YETI and "Structure-informed" YETI. Horizontal: training epoch; Vertical: RAE in log scale. Banded curves: the 25% & 75% percentile of the errors among 40 test samples.

Pobust and	Interpretak	le Leornin	a for Mod	arn Haalth	oore (Ann	andiv)	
PDE Solver		PIANO	YETI	SONATA			Misc

- **1** PyTorch PDE Solver Toolbox
- 2 Brain Advection-Diffusion Synthesis
- 3 PIANO
- 4 YETI
- 5 SONATA
- 6 HARP

7 Brain-ID

8 UNA

9 Miscellaneous

PDE SolverGeneratorPIANOYETISONATAHARPBrain-IDUNAMisc[Recap] YETI - Governing Equation $\frac{\partial C}{\partial t} = \mathbf{V} \cdot \nabla C + \nabla \cdot ($ $\mathbf{D} \ \nabla C)$ s.t.B.C.

- Advection := $-\mathbf{V} \cdot \nabla C$
 - Incompressible fluid flow $\Leftrightarrow \nabla \cdot \mathbf{V} = 0$
- Diffusion := $\nabla \cdot (\mathbf{D} \nabla C)$
 - ► Symmetric positive semi-definite (PSD) diffusion

$$* C = C(\mathbf{x}, t)$$

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc [SONATA] Stochastic Mass Transport of Tracer - Governing Equation

$$\frac{\partial C}{\partial t} = -(P \diamond \overline{\mathbf{V}}) \cdot \nabla C + \nabla \cdot \left((P \circ \overline{\mathbf{D}}) \nabla C \right) + \sigma \partial W \quad s.t. \quad B.C.$$

• Advection := $-\mathbf{V} \cdot \nabla C$

- Incompressible fluid flow $\Leftrightarrow \nabla \cdot \mathbf{V} = 0$
- $\overline{\mathbf{V}}$: "Anomaly-free" velocity vector field
- Diffusion := $\nabla \cdot (\mathbf{D} \nabla C)$
 - ► Symmetric positive semi-definite (PSD) diffusion
 - \blacktriangleright **D**: "Anomaly-free" diffusion tensor field
- $P := P(\mathbf{x}) \in \mathbb{R}_{(0,1]}$: Anomaly probability
- $\sigma := \sigma(\mathbf{x}) \in \mathbb{R}_{(0,\infty)}$: Model uncertainty (\propto Anomaly probability)

* $C = C(\mathbf{x}, t), W = W(\mathbf{x}, t)$: Brownian motion

PDE Solver	Generator	PIANO	YETI	SONATA	HARP	Brain-ID	UNA	Misc		
Anomaly-Decomposed Divergence-Free Vector Representation										

Requirements:

- (a) By construction, learned velocity field V is divergence-free;
- (b) Any divergence-free V can be represented;
- (c) V can be decomposed into:
 - ▶ *P*: anomaly probability field;
 - \blacktriangleright \overline{V} : corresponding "anomaly-free" velocity field.

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Anomaly-Decomposed Divergence-Free Vector Representation

Theorem: Anomaly-decomposed Divergence-free Vector

For \forall vector field $\mathbf{V} \in \mathbb{R}(\Omega)^d$ and scalar field P in $\mathbb{R}_{(0,1]}(\Omega)$ on a bounded domain $\Omega \subset \mathbb{R}^d$ with smooth boundary $\partial \Omega$. If \mathbf{V} satisfies $\nabla \cdot \mathbf{V} = 0$, \exists a potential Ψ in $\mathbb{R}(\Omega)^{\alpha}$:

$$\mathbf{V} = \nabla \times (P \, \boldsymbol{\Psi}), \quad (P \, \boldsymbol{\Psi}) \cdot \mathbf{n} \big|_{\partial \Omega} = 0.$$

Definition: "Anomaly-free" Velocity and Operation

Denote "anomaly-free" operator \diamond for velocity fields:

 $\mathbf{V} = P \diamond \overline{\mathbf{V}} = \nabla P \times \Psi + P \overline{\mathbf{V}},$

where $\overline{\mathbf{V}} = \nabla \times \Psi$.

* $\alpha = 1(3)$ when d = 2(3)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Anomaly-Decomposed Divergence-Free Vector Representation

Theorem: Anomaly-decomposed Divergence-free Vector

For \forall vector field $\mathbf{V} \in \mathbb{R}(\Omega)^d$ and scalar field P in $\mathbb{R}_{(0,1]}(\Omega)$ on a bounded domain $\Omega \subset \mathbb{R}^d$ with smooth boundary $\partial \Omega$. If \mathbf{V} satisfies $\nabla \cdot \mathbf{V} = 0, \exists$ a potential Ψ in $\mathbb{R}(\Omega)^{\alpha}$:

 $\mathbf{V} = \nabla \times (P \, \boldsymbol{\Psi}), \quad (P \, \boldsymbol{\Psi}) \cdot \mathbf{n} \big|_{\partial \Omega} = 0.$

Conversely, for $\forall P \in \mathbb{R}_{(0,1]}(\Omega), \Psi \in \mathbb{R}(\Omega)^{\alpha}, \nabla \cdot \mathbf{V} = \nabla \cdot (\nabla \times (P \Psi)) = 0.$

Definition: "Anomaly-free" Velocity and Operation

Denote "anomaly-free" operator \diamond for velocity fields:

 $\mathbf{V} = P \diamond \overline{\mathbf{V}} = \nabla P \times \Psi + P \overline{\mathbf{V}},$

where $\overline{\mathbf{V}} = \nabla \times \Psi$.

* $\alpha = 1(3)$ when d = 2(3)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Anomaly-Decomposed Symmetric PSD Tensor Representation

Definition: $n \times n$ Symmetric PSD Tensor Group

$$PSD(n) \equiv \{ \mathbf{D} \in \mathbb{R}^{n \times n} \, \big| \, \forall \mathbf{x} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{D} \mathbf{x} \ge 0 \}.$$

Requirements:

- (a) By construction, learned diffusion field **D** is symmetric PSD;
- (b) Any symmetric PSD tensor field **D** can be represented;
- (c) **D** can be decomposed into:
 - ► *P*: anomaly probability field;
 - \blacktriangleright $\overline{\mathbf{D}}$: corresponding "anomaly-free" diffusion tensor field.

Anomaly-Decomposed Symmetric PSD Tensor Representation

Theorem: Symmetric PSD Tensor via Spectral Decomposition

For $\forall n \times n$ symmetric PSD tensor **D** and $P \in \mathbb{R}_{(0,1]}(\Omega)$, \exists an upper triangular matrix with zero diagonal entries, $\mathbf{B} \in \mathbb{R}^{\frac{n(n-1)}{2}}$, and a non-negative diagonal matrix, $\Lambda \in SD(n)$, satisfying:

SONATA

 $\mathbf{D} = \mathbf{U} \left(P \mathbf{\Lambda} \right) \mathbf{U}^{T}, \quad \mathbf{U} = exp(\mathbf{B} - \mathbf{B}^{T}) \in SO(n).$

Definition: "Anomaly-free" Diffusion and Operation

Denote "anomaly-free" operator \circ for diffusion tensor fields:

$$\mathbf{D} = P \circ \overline{\mathbf{D}} = P \overline{\mathbf{D}},$$

where $\overline{\mathbf{D}} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$.

Anomaly-Decomposed Symmetric PSD Tensor Representation

Theorem: Symmetric PSD Tensor via Spectral Decomposition

For $\forall n \times n$ symmetric PSD tensor **D** and $P \in \mathbb{R}_{(0,1]}(\Omega)$, \exists an upper triangular matrix with zero diagonal entries, $\mathbf{B} \in \mathbb{R}^{\frac{n(n-1)}{2}}$, and a non-negative diagonal matrix, $\Lambda \in SD(n)$, satisfying:

SONATA

$$\mathbf{D} = \mathbf{U} (P \mathbf{\Lambda}) \mathbf{U}^{T}, \quad \mathbf{U} = exp(\mathbf{B} - \mathbf{B}^{T}) \in SO(n).$$

Conversely, for $\forall P \in \mathbb{R}_{(0,1]}(\Omega)$, $\forall \mathbf{B} \in \mathbb{R}^{\frac{n(n-1)}{2}}$, and any diagonal matrix with non-negative diagonal entries, $\mathbf{\Lambda} \in SD(n)$, the above Eq. results in a symmetric PSD tensor, **D**.

Definition: "Anomaly-free" Diffusion and Operation

Denote "anomaly-free" operator \circ for diffusion tensor fields:

$$\mathbf{D} = P \circ \overline{\mathbf{D}} = P \overline{\mathbf{D}},$$

where $\overline{\mathbf{D}} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$.

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc SONATA | *Pre-Training* on Synthetic Data (Link to Simulation)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc SONATA Fine-Tuning on Real Data

PDE Solver		PIANO	YETI	SONATA				Misc
End-to-End	& Interpreta	able Stroke	Lesion	Detection	Quantitat	ive Compar	isons (Me	etrics)

Metrics		D ² -SONATA+		D^2 -SONATA		YETI		PIANO		ISLES				
		F	$\ \mathbf{V}\ _2$	<i>tr</i> _D	F	$\ \mathbf{V}\ _2$	tr _D	$\ \mathbf{V}\ _2$	tr _D	$\ \mathbf{V}\ _2$	D	CBF	CBV	MTT
ur	Me.	0.45	0.27	0.44	0.47	0.29	0.42	0.30	0.59	0.55	0.58	0.67	0.78	0.57
μ	Med.	0.47	0.31	0.49	0.49	0.30	0.48	0.31	0.59	0.54	0.55	0.59	0.79	0.58
(↓)	(STD)	(0.13)	(0.15)	(0.14)	(0.13)	(0.17)	(0.15)	(0.11)	(0.19)	(0.15)	(0.16)	(0.12)	(0.23)	(0.13)
141	Me.	289	167	159	280	165	166	155	49	108	52	34	16	31
t	Med.	292	169	151	286	164	158	134	42	89	48	28	11	32
()	(STD)	(51)	(42)	(56)	(58)	(37)	(60)	(62)	(22)	(35)	(26)	(22)	(12)	(37)
AUC	Me.	0.80	0.71	0.63	0.79	0.70	0.64	0.73	0.51	0.74	0.68	0.72	0.65	0.65
AUC	Med.	0.76	0.72	0.65	0.76	0.71	0.65	0.73	0.50	0.74	0.69	0.73	0.68	0.66
^D	(STD)	(0.06)	(0.04)	(0.08)	(0.05)	(0.04)	(0.07)	(0.06)	(0.03)	(0.04)	(0.03)	(0.07)	(0.06)	(0.06)
* ↓ (↑)	(\uparrow) indicates the lower (higher) values are better.													

Quantitative comparison between D^2 -SONATA+, D^2 -SONATA, YETI, PIANO and ISLES maps across 10 test subjects from ISLES2017-MRP dataset, using *Mean (Me.)*, *Median (Med.)*, *Standard Deviation (STD)* of relative mean μ^r , absolute (|t|), and area under the curve (AUC).

Dobust on	Interpretak	la Lagrain	a for Mod	orn Ugalth	ooro (Ann	andix)	
PDE Solver		PIANO	YETI	SONATA	HARP		Misc

- **1** PyTorch PDE Solver Toolbox
- 2 Brain Advection-Diffusion Synthesis
- 3 PIANO
- 4 YETI
- 5 SONATA
- 6 HARP

7 Brain-ID

8 UNA

9 Miscellaneous

Human Brain

ADC Atlas

Grey Matter

Segmentation

White Matter

Segmentation

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C
PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Diffusion Atlas (D) Maps (Link to Pipeline)

* Top: *D* atlas averaged from normal hemispheres;

Middle (Bottom): D atlas segmented by gray (white) matter.

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Velocity Atlas (||V||) Maps (Link to Pipeline)

* Top: ||V|| atlas averaged from normal hemispheres;
Middle (Bottom): ||V|| atlas segmented by gray (white) matter.

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C

PDE Solver		PIANO	YETI	SONATA	HARP		Misc
ISLES2017	Brain Perf	fusion Data	set: Com	parison Res	sults (Link	to Metrics)	

1	Maps	$\ \mathbf{V}\ _2$	$\ \mathbf{V}\ _2\text{-}T_{\mathrm{CD}}$	D	D - $T_{\rm CD}$	ADC	CBF	CBV	MTT	TTP	Tmax
	Mean	0.54	-	0.59	-	0.76	0.57	0.72	0.61	0.69	0.21
μ^r	Median	0.52	-	0.56	-	0.78	0.56	0.76	0.63	0.68	0.15
	STD	0.12	-	0.19	-	0.14	0.19	0.15	0.20	0.13	0.16
	Mean	0.69	-	0.55	-	0.75	0.63	0.76	0.56	0.55	0.35
σ^r	Median	0.66	-	0.55	-	0.78	0.61	0.77	0.55	0.54	0.29
	STD	0.14	-	0.17	-	0.20	0.18	0.16	0.17	0.19	0.23
	Mean	60.10	80.56	29.51	34.20	20.55	32.61	13.53	33.56	44.59	59.86
t	Median	47.13	50.13	20.58	26.28	13.50	26.08	8.48	18.52	28.87	46.44
	STD	51.83	67.30	27.67	38.84	19.53	27.47	14.21	31.70	44.16	50.33
AUC	Actual	0.73	0.81	0.59	0.63	0.69	0.66	0.57	0.64	0.75	0.78
	Ratio	0.81	0.84	0.72	0.73	0.66	0.71	0.57	0.60	0.80	0.78

Quantitative comparison between PIANO feature maps, their *contra-lateral difference significance* (T_{CD}), and ISLES2017 summary maps over 43 subjects, using relative mean μ^r , STD ratio σ^r , absolute t-value |t|, and area under curve (AUC) of receiver operating characteristic (ROC) curves.

P. Liu et al.: HARP: Hemisphere-Normalized Atlas Representing Perfusion. Under Review at Stroke (2024) C

D 1 (1.1 1	1 7 .		TT 1/1	(•	1. >	
PDE Solver	Generator	PIANO	YETI	SONATA		Brain-ID	Misc

- **1** PyTorch PDE Solver Toolbox
- 2 Brain Advection-Diffusion Synthesis
- 3 PIANO
- 4 YETI
- 5 SONATA
- 6 HARP

9 Miscellaneous

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Feature Robustness & Generalizability | Downstream Adaptations on Small Datasets

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Feature Robustness & Generalizability | Adapt Features to Downstream Tasks

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) 🕫

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Mise Feature Robustness & Generalizability | Adapt Features to Downstream Tasks

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

Dobust on	l Intonnatok	la Lagunin	a for Mad	orre Hoolth	andir		
PDE Solver		PIANO	YETI	SONATA		UNA	Misc

- **1** PyTorch PDE Solver Toolbox
- 2 Brain Advection-Diffusion Synthesis
- 3 PIANO
- 4 YETI
- 5 SONATA
- 6 HARP

7 Brain-ID

9 Miscellaneous

UNA's Healthy-to-Diseased Generation Naturally Enables Supervised Learning

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) &

P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024)

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025)

PDE Solver Generator PIANO YETI SONATA HARP Brain-ID UNA Misc Robustness & Generalizability | Pathology Appearance & Modality - Comparisons

Table: Quantitative comparisons of healthy anatomy reconstruction performance between UNA and state-of-the-art contrast-agnostic T1w synthesis models, using images with simulated pathology.

Modality	Method		L1 (↓)			PSNR (1)		SSIM (1)
		Full	Healthy	Diseased	Full	Healthy	Diseased	Full	Healthy	Diseased
	SynthSR (2023) 🗗	0.0285	0.0253	0.0010	20.71	22.90	36.59	0.823	0.879	0.895
T1w	Brain-ID (2024) 🖸	0.0231	0.0219	0.0007	22.86	23.71	40.22	0.859	0.890	0.904
MRI	PEPSI (2024) 대	0.0257	0.0194	N/A	21.78	23.21	N/A	0.831	0.872	N/A
	UNA	0.0147	0.0143	0.0003	31.98	33.25	45.61	0.981	0.992	0.998
T2w	SynthSR (2023) 🗗	0.0362	0.0337	0.0016	18.25	20.66	35.47	0.816	0.864	0.880
	Brain-ID (2024) 🗗	0.0277	0.0269	0.0008	20.98	22.31	39.62	0.844	0.881	0.892
MRI	PEPSI (2024) 대	0.0295	0.0279	N/A	19.33	23.18	N/A	0.820	0.845	N/A
	UNA	0.0184	0.0182	0.0003	25.14	26.22	45.69	0.938	0.981	0.998
	SynthSR (2023) 🗗	0.0327	0.0300	0.0016	19.30	21.04	34.88	0.823	0.869	0.895
FLAIR	Brain-ID (2024) 🗗	0.0285	0.0242	0.0010	19.98	20.32	38.76	0.840	0.879	0.907
MRI	PEPSI (2024) 갑	0.0301	0.0287	N/A	19.82	21.59	N/A	0.842	0.850	N/A
	UNA	0.0202	0.0194	0.0007	28.34	28.93	42.91	0.921	0.982	0.996
	SynthSR (2023) 🗗	0.0541	0.0536	0.0029	13.97	13.13	28.50	0.712	0.763	0.725
CT	Brain-ID (2024) C	0.0339	0.0357	0.0018	20.15	21.20	32.87	0.811	0.824	0.843
CI	PEPSI (2024) 🗗	0.0473	0.0420	N/A	16.72	16.90	N/A	0.723	0.782	N/A
	UNA	0.0259	0.0266	0.0010	25.63	25.70	42.53	0.883	0.897	0.895

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) C

Robustness	& Genero	lizability	Anomaly	Detection /	Revond Ar	nnotations		
PDE Solver		PIANO	YETI	SONATA			UNA	Misc

Table: **Dice** scores (\uparrow) of anomaly detection performance based on the voxel-wise absolute differences between the diseased input and the reconstructed anatomy.

Image Source	Dataset	SynthSR (2023) 🖒	Brain-ID (2024) 🗗	VAE (2021) 2	LDM (2023) 2	UNA
Healthy T1w with	ADNI 🖒	0.27	0.26	0.18	0.23	0.36
	HCP 🗗	0.28	0.28	0.13	0.21	0.33
	ADHD200 🗗	0.23	0.25	0.15	0.23	0.34
Dathalagy	ADNI3 🗗	0.27	0.28	0.17	0.24	0.37
Pathology	AIBL 🗗	0.25	0.24	0.12	0.20	0.32
Stroke T1w	ATLAS 🖒	0.24	0.24	0.11	0.22	0.31

P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025)

Peirong Liu

✓ Offline Fine-Tuning

Robust and Interpretable Learning for Modern Healthcare (Appendix)

Real

Images

P. Liu et al.: Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging. ECCV (2024) & P. Liu et al.: Pathology-Enhanced Pulse-Sequence-Invariant Representations for Brain MRI. MICCAI (2024) & P. Liu et al.: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization. CVPR (2025) &

P. Liu et al.: A Modality-Agnostic Multi-Task Foundation Model for Human Brain Imaging. Under Review at IEEE TMI (2025) C

On-the-Flv

Low-Field & Portable MRI @ Hyperfine C

Synthetic Images

Robust and	Interpretak	le Learnin	a for Mod	ern Health	pare (Ann	endiv)	
PDE Solver		PIANO	YETI	SONATA			Misc

- **1** PyTorch PDE Solver Toolbox
- 2 Brain Advection-Diffusion Synthesis
- 3 PIANO
- 4 YETI
- 5 SONATA
- 6 HARP

7 Brain-ID

8 UNA

9 Miscellaneous

CBF: Cerebral Blood Flow | T_{max}: Time To Max | MTT: Mean Transit Time = CBV / CBF TTP: Time To Peak | CBV: Cerebral Blood Volume | AIF: Arterial Input Function

F. Scalzo & D. Liebeskind: Perfusion Angiography in Acute Ischemic Stroke. Computational and Mathematical Methods in Medicine (2016) &

CBF: Cerebral Blood Flow | T_{max}: Time To Max | MTT: Mean Transit Time = CBV / CBF TTP: Time To Peak | CBV: Cerebral Blood Volume | AIF: Arterial Input Function

F. Calamante: Arterial Input Function in Perfusion MRI: A Comprehensive Review. Progress in Nuclear Magnetic Resonance Spectroscopy (2013) &

Time (s)

CBV

Time (s)

F. Calamante: Arterial Input Function in Perfusion MRI: A Comprehensive Review. Progress in Nuclear Magnetic Resonance Spectroscopy (2013) 🕫

Perfusion summary maps generated from *identical source* data using *different software* C

K. Kudo et al.: Differences in CT Perfusion Maps Generated by Different Commercial Software. Radiology (2009) &

CBF: Cerebral Blood Flow | T_{max} : Time To Max | MTT: Mean Transit Time = CBV / CBF TTP: Time To Peak | CBV: Cerebral Blood Volume | AIF: Arterial Input Function

F. Calamante: Arterial Input Function in Perfusion MRI: A Comprehensive Review. Progress in Nuclear Magnetic Resonance Spectroscopy (2013) &

PDE Solver	Generator	PIANO		SUNATA	ПАКР	Brain-iD	UNA	WIISC				
Medical I	Medical Imaging Techniques CT & MRI											

Signal-intensity (SI) behavior of a partial saturation pulse sequence - All are T1w! 3

MRI

Soft Tissues Tumors Spinal Cords Tendons/Joints

Non-Quantified Units

The End

pliu17@mgh.harvard.edu

